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Abstract. Teamwork is an increasingly important aspect of knowledge production. In par-
ticular, factors influencing team formation relative to the composition of expertise are
crucial for both organizational performance and for informing policy. In this paper, I draw
attention to technology access as a highly influential factor impacting expertise in team
formation. I examine the hack of Microsoft Kinect as an exogenous event that suddenly
reducedmotion-sensing technology costs. I show that great reductions in technology costs
substitute for ex ante optimal involvement of area specialists and facilitate involvement of
outside-area specialists through collaborationwith researchers with broader knowledge—
generalists. In other words, technology costs influence the composition of expertise in
teamwork, with sufficiently large reductions leading to knowledge creation that com-
bines more broadly across knowledge areas. These findings have important implications
for organizations and policy makers in crafting incentives for more diverse knowledge
creation through strategic investments that lower technology costs and influence team
formation.
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1. Introduction
Knowledge production plays a central role in eco-
nomic growth. An increasingly important aspect of
knowledge production is teamwork. Indeed, the lone
inventor as the primary unit of knowledge production
has been replaced by collaborative work (Jones 2009,
Singh and Fleming 2010). Moreover, relative to singu-
lar knowledge production, collaborative work has been
shown to yield more impactful and influential discov-
eries (Wuchty et al. 2007). A first order concern in team
knowledge production is the composition of exper-
tise that reflects directly in knowledge output. Indeed,
team knowledge production leveraging diverse exper-
tise has been found to accentuate the effect of impactful
team discoveries (e.g., Weitzman 1998, Uzzi et al. 2013).
Despite evidence of the growing importance of team

knowledge production, our understanding of factors
influencing the composition of expertise in teamwork
remains limited. Prior literature primarily focused
on human capital attributes influencing collaboration
decisions1 and largely ignored other inputs in knowl-
edge production that influence breadth of knowledge
in teamwork (Stephan 2012). In particular, the relation-
ship between human capital and technology remains
underexplored despite the increasingly influential role
of equipment in adding knowledge in the process of

innovation (Stephan 2012, Murray et al. 2016) through
the algorithms embedded in the technology (Mokyr
2002). This paper seeks to understand the interrelated
roles of technology and breadth of knowledge in team
production.

Conditions of access to technology carry the poten-
tial to influence team formation relative to the composi-
tion of expertise. This in turn impacts output, a primary
concern for private and public organizations inter-
ested in innovation (e.g., Nelson 1982, Cockburn and
Henderson 1998, Owen-Smith and Powell 2004). For
example, reductions in costs of computational power
gave rise to advancements in machine learning and big
data–driven decision making. Various firms organized
to utilize the technology, from entrepreneurial teams
to large organizations. For instance, at Netflix, collab-
orations between economists and software engineers
were consequently formed and translated into signifi-
cant economic returns for the company (e.g., Smith and
Telang2016). In the sciences, access to theLargeHadron
Collider attracted researcherswithavarietyof expertise
fromaround the globe. The subsequent discovery of the
Higgs particle was the result of a large-scale collabora-
tion between more than 3,000 scientists from 182 insti-
tutions in 38 countries.2
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In all such cases, it is unclear how knowledge
production would have unfolded under a different
technology cost regime or what economic conse-
quences would have followed. In this paper, I focus
on the influential role of technology costs for team
formation relative to the composition of expertise in
collaboration.

I motivate my empirical analysis with a formal
model of knowledge production, acknowledging that
actors vary in their breadth of expertise. This is impor-
tant for two main reasons. First, the fact that divi-
sion of labor, or specialization, positively impacts
productivity is well accepted, dating back to Adam
Smith’s (1776) seminal work. Second, specialization
correlateswith increased coordination frictions in team
production (Becker and Murphy 1992), suggesting a
role for agents with broader expertise—generalists—
in reducing such frictions (Jones 2010). The model
demonstrates the usefulness of separating generalists,
within-area specialists, and outside-area specialists,
and shows that a technology cost decrease can be either
democratizing—individuals, regardless of their level
of focal area expertise, incorporate new knowledge by
using the technology—or increase returns to within-
area specialization. Stated differently, the model indi-
cates that the magnitude of technology costs alters
team formation relative to the composition of expertise.

In observational data, it is difficult to isolate the role
of cost conditions from a team composition selection
effect, since the knowledge creation process endoge-
nously affects the cost of technology. For example, in
the sciences, funding is selectively provided to high-
quality research technologies that are expected to sig-
nificantly and positively impact innovation (Stephan
2012). Similarly, in firms, senior managers devote sig-
nificant effort to selecting and allocating funds to the
most promising projects (e.g., Astebro and Elhedhli
2006, Hallen 2008). As such, observed team forma-
tion decisions might be endogenous to anticipated or
allocated funding, making the study of team forma-
tion particularly challenging. To address such con-
cerns, I leverage as a natural experiment an exogenous
event correlated with reductions in the cost of motion-
sensing research technology, but not with the ex ante
rate and direction of inventive activity. The unantici-
pated hack of Microsoft Kinect provides the event.

On November 4, 2010, Microsoft launched Kinect
for Xbox 360, a motion-sensing video gaming device.
Unexpectedly, and within days of Kinect’s launch, the
open-source community released a driver that made
it possible to use Kinect as a motion-sensing research
technology. Given Kinect’s technological sophistica-
tion relative to its low price ($150 at launch and
lower thereafter), the consequence has been an unfore-
seen cost reduction for motion-sensing technology in
research. Its release marked the start of what Microsoft

eventually coined the “Kinect Effect.”3 In personal
interviews, researchers confirmed Kinect’s unexpected
use in academia and its role in lowering the cost of
motion-sensing research technology. For example, one
researcher noted that his use of Kinect “is not the des-
ignated one from Microsoft . . .not a gaming one . . . the
depth measurement done by this camera is so afford-
able it is a breakthrough for computer vision,” while
another said that “the Kinect sensor is the first camera
that provides the depth images with sufficient resolu-
tion for typical computer vision tasks at an affordable
price to most [researchers].”

In my empirical analysis, I focus on how collab-
oration varies with researchers’ breadth of expertise
as observed in researchers’ breadth of involvement
with research topics. I separate specialists (individ-
uals with narrow, well-defined research topics) from
generalists (researchers with diverse research topics).
Specifically, I examine changes in the collaboration
rate between generalists, outside-area specialists, and
within-area specialists, as well as changes in the com-
position of authorship on academic papers referenc-
ing motion-sensing keywords, before and after the
launch of Kinect. I find evidence of an increase in
the total number of publications referencing motion-
sensing keywords after the launch of Kinect, driven by
an increase in collaboration between generalists and
non-motion-sensing specialists on such publications,
and a decrease in collaboration between generalists
and motion-sensing specialists.

I use the theoretical model to sharpen the infer-
ences drawn from these empirical findings. Specifi-
cally, when the reduction in cost is democratizing, the
optimal collaboration composition is altered to reduce
ex ante optimal involvement of within-area special-
ists and to facilitate involvement of outside-area spe-
cialists through collaboration with generalists. Stated
differently, with great cost reductions, the research
technology substitutes for the need to include within-
area specialists in coauthorship teams.4 In turn, this
frees up coauthorship capacity, which is otherwise lim-
ited by collaboration frictions (Bikard et al. 2015), to
include specialists from other research areas and drive
an increase in publications referencing motion-sensing
keywords. Generalists appear to act as intermediaries
in the process. The empirical results indicate the effect
occurs for 1 in 10 papers. Intuitively, this mechanism
suggests a shift to knowledge creation occurring more
broadly across knowledge areas as a consequence of a
reduced cost of research technology.

This study makes two main contributions to our
understanding of the knowledge creation process.
First, the results contribute to the literature on pro-
ductivity in knowledge creation by drawing atten-
tion to the interrelated roles of technology and in-
dividual-level expertise. Technology substitutes for
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expertise in knowledge production, thus altering col-
laboration costs and influencing optimal team forma-
tion. This finding suggests implications for domains
where collaboration decisions are discretionary, such
as scientific research and entrepreneurship, as well
as settings where managers coordinate team forma-
tion. For example, policy makers interested in influenc-
ing innovation output (e.g., Solow 1956, Romer 1990,
Aghion et al. 2008, Acemoglu 2012) could strategi-
cally evaluate funding decisions for technologies with
a goal of increasing diversity in team knowledge pro-
duction. Similarly, managers and executives could con-
sider technology acquisitions as levers for influencing
research and development (R&D) outcomes.
Second, this study contributes to the literature on

team formation by unlocking a particular avenue
through which diversity functions in knowledge pro-
duction. Specifically, I find that researchers with
broader exposure to knowledge play an important role
in team formation in environments with democratiz-
ing technology cost reductions. These results suggest
fundamental changes in the organization of knowledge
creation relative to individuals’ breadth of knowledge
and their differential roles in knowledge production. In
the sciences, the role of generalists in the organization
of knowledge creation might grow in significance, as
knowledge accumulation leads to specialization in pro-
gressively narrower niches (Jones 2009). This suggests
a reevaluation of academic incentives that encourage
a narrow research focus through reputational benefits
or in response to monetary awards (e.g., Franzoni et
al. 2011, Stephan 2012). Similarly, the finding provides
direction for firms interested in evaluating their R&D
staffing requirements or in crowdsourcing aspects of
their knowledge creation needs (e.g., Nielsen 2011,
Franzoni and Sauermann 2014).

2. Theory and Hypotheses
2.1. Specialization, Research Technology, and

Knowledge Production
Breadth of knowledge characterizes the composition of
expertise in knowledge production. Technology con-
tributes through the knowledge contained in embed-
ded algorithms (Stephan 2012), which reduce frictions
of incorporating existing knowledge in the production
of new knowledge (Mokyr 2002).
It is unclear ex ante how reductions in technol-

ogy costs might influence team formation. On the one
hand, cost reductions might be democratizing: agents,
regardless of their level of focal area expertise, can
incorporate the focal type of knowledge or algorithms
in their projects by simply using the technology. For
example, reductions in cost of computational capabili-
ties facilitate engagement with complex statistical anal-
ysis software notwithstanding specialized knowledge
in mathematics. On the other hand, cost reductions

might increase returns to within-area specialization.
For example, computer-aided design and drafting soft-
ware increases returns for architects and structural
engineers.

It follows that a starting point in understanding
the interrelated roles of technology and breadth of
knowledge in team production is to consider the well-
established role of division of labor. The approach facil-
itates an understanding of team dynamics relative to
agents’ expertise and thus provides a foundation to
consider the role of technology in potentially altering
those dynamics.

The fact that division of labor, or specialization,
positively impacts productivity and hence economic
growth is well accepted, dating back to Adam Smith’s
(1776) seminal work. Furthermore, evidence indicates
a trend toward specialization in increasingly nar-
rower niches, explained by the growth in knowledge
stock and the knowledge frontier’s continuous forward
movement (Jones 2009, 2010, 2011).

Specifically, Jones (2009) puts forth a “knowledge
burden” hypothesis, in which successive generations of
innovators face an increasing education burden due to
the advancing knowledge frontier. As a consequence,
time spent in education lengthens, and the domain of
individual-level expertise narrows. In turn, this leads
to an increased need for collaborative work to move
knowledge forward by combining the increasingly nar-
rower niches of specialization (Jones 2009, Agrawal et
al. 2016). This suggests that coordination of inventive
activity across knowledge areas grows in complexity as
specialization increases. First, it is increasingly costly
to search for ideas that span knowledge areas. This is
important because impactful innovations draw from
diverse knowledge and include unusual combinations
(e.g., Weitzman 1998, Uzzi et al. 2013). Second, it is
getting progressively more difficult to coordinate effi-
cient teams of specialists (Becker and Murphy 1992)
who work on topics bridging knowledge areas (Jones
2010). This search problem is indicative of a potential
demand for individuals who have enough exposure
to broad knowledge (generalists) to lower coordination
costs between collaborating specialists on projects that
require bridging across knowledge areas (within-area
and outside-area specialists; (Jones 2010)).5
Technology can potentially reduce the burden of

knowledge and hence collaboration frictions by con-
tributing the knowledge contained in embedded algo-
rithms (Mokyr 2002, Stephan 2012). The level of
influence seems to depend on the total cost advantage
captured through technology usage and its consequent
impact on collaboration frictions and hence team for-
mation relative to the composition of expertise. For
example, rapid developments in DNA sequencing over
the past decades reduced the costs of DNA sequenc-
ing technology.6 The fields of genomics and molecu-
lar biology consequently propelled forward. However,
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the reductions in cost of DNA sequencing technology
also benefited researchers and organizations in other
medical fields, such as in epidemiology, immunology,
evolutionary biology, and forensics. It is unclear ex
ante how the cost reduction influenced the process of
knowledge creation relative to agents’ expertise: who
benefited most from the reduction and how.
To shed light on this process, I developed a simple

formal model that explicitly considers the impact of
a technology cost reduction on agents’ collaboration
choices in acting on knowledge creation opportuni-
ties. I use the model not only to inform my empirical
approach, but also to sharpen the inferences that might
be drawn from my findings. Overall, the model shows
that the beneficiaries of the technology shock depend
on the incidence of the cost reduction. While at some
level the results of the model are intuitive, the model
provides a useful framework for understanding the
impact of a reduction in technology cost on knowledge
production, particularly with respect to the behavior of
generalists and specialists in team formation.

2.2. Formal Model
Consider a set {V1,...,n} of opportunities for knowledge
creation that involve the algorithms contained in a
technology, where V represents the value of one such
opportunity. Also, consider a cost c of including these
algorithms in the focal project. The technology low-
ers these costs since, absent an aiding device, agents
interested in projects involving such algorithms would
have to, for example, manually design and run the
algorithms.
With these notations inmind, consider a set of agents

i(V i ,C, ci) engaging with such projects, where V i is the
value of the project accruing to agent i, C is the cost
of collaboration on the project, and ci is the cost of
engagement with the algorithms contained in the tech-
nology. Opportunities for knowledge creation involv-
ing the algorithms contained in the technology can
arise for any agent i.7 I consider three types of agents i:
generalists (GEN), outside-area specialists (OAS), and
within-area specialists (WAS).
Assumptions. I make several assumptions regarding
V i , C, and ci . First, agent i has the option to pass on
the opportunity or engage with it. If the agent chooses
to pass, the value accruing from his or her outside
option is V i

O . If the agent chooses to pursue the oppor-
tunity, he or she has the option to collaborate8 with a
generalist and capture value V i

GEN, with a within-area
specialist and capture value V i

WAS, or with an outside-
area specialist and capture value V i

OAS. For simplicity,
I denote all values V i

GEN resulting from collaboration
with generalists by VGEN and all values V i

OAS result-
ing from collaboration with outside-area specialists by
VOAS (note that under this notation, VOAS

GEN and VGEN
OAS are

equivalent to max(VOAS ,VGEN)). I assume V i <VGEN and

V i < VOAS, while I remain agnostic on the relationship
between VGEN and VOAS. The approach acknowledges
the fact that generalists and/or outside-area special-
ists are more likely to produce more innovative work,
since they combine more broadly across knowledge
areas (Weitzman 1998, Uzzi et al. 2013).9 This obser-
vation also motivates assumptions on agents’ outside
options. Specifically, I remain agnostic on the relation-
ship between VWAS

O and the value accruing to within-
area specialists from engaging with the opportunity
since both occur within area and assume VGEN

O and
VOAS

O are lower than the values accruing to these types
from engaging with the opportunity.

Second, if agent i engages in collaboration, the team
will incur a collaboration cost C, which varies with the
type of collaborator. If the collaboration occurs only
between specialists, the cost will be higher than in situ-
ations in which the collaboration includes a generalist.
Generalists have a lower collaboration cost compared
to specialists, because of their wider breadth of expo-
sure to knowledge that is directly reflected in the col-
laboration cost (Bikard et al. 2015). Thus, for simplicity,
I denote the collaboration cost incurred by teams of
specialists by C and normalize the collaboration cost
incurred by teams that include a generalist to 0.10
Third, the cost of engagement with the algorithms

contained in the technology ci varies with agent’s i
level of expertise relative to that knowledge. Specif-
ically, I assume cWAS < cGEN < cOAS. This assumption
is motivated by the fact that agents’ heterogeneity in
knowledge relative to the algorithms contained in the
technology should reflect in their ability to incorporate
these algorithms in their projects. For example, absent
a motion-sensing research technology, the ability of
researchers without motion-sensing skills (outside-
area specialists) to incorporate motion-sensing in their
research would be limited relative to that of motion-
sensing specialists (within-area specialists). Since gen-
eralists, by definition, have a wider exposure to knowl-
edge than outside-area specialists, I assume their cost
of engagement with motion sensing is lower than that
of outside-area specialists who lack the broad expo-
sure to knowledge, but higher than that of within-area
specialists.
Agents’ Optimal Choices. I review the optimal choice
of each agent i who seeks to maximize his or her payoff
given the assumed costs and values. I do so to iden-
tify the conditions under which each type will and will
not collaborate with another type. I assume a collab-
oration occurs only if the action is value maximizing
for each party. I display agent’s i options and payoffs
in Figure 1.

OAS. Consider that the opportunity comes to an
outside-area specialist. If the agent chooses to pass on
the opportunity, the net value accruing will be VOAS

O .
Otherwise, if the agent chooses to collaborate with
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Figure 1. (Color online) Decision Tree for Individual i

Individual i receives the opportunity

Implement Pass

Choose team Outside option
Vi

Outside

Collaborate with
generalist

(Vi
GEN – min(cGEN , ci))

Collaborate with
outside-area specialist

(Vi
OAS – min(cOAS, ci) – C)

Collaborate with
within-area specialist
(Vi

WAS – cWAS – C)

a within-area specialist, the net value will be VOAS
WAS −

(cWAS + C); if the agent collaborates with a generalist,
the net value will be VOAS

GEN − cGEN; and if the agent col-
laborates with another outside-area specialist, the net
value will be VOAS

OAS − (cOAS +C). It follows that it is opti-
mal for outside-area specialists to collaborate with gen-
eralists if max(VGEN ,VOAS) − VOAS > cGEN − (cWAS + C),
and to otherwise collaborate with within-area special-
ists. In other words, it is optimal for outside-area spe-
cialists to collaborate with within-area specialists as
long as within-area specialists provide a large enough
cost advantage to offset the premium value otherwise
captured from collaborating with generalists. Outside-
area specialists find it optimal to pursue their out-
side options if the average net value from collaborat-
ing with generalists or within-area specialists is lower
than VOAS

O .
GEN. Consider that the opportunity comes to a gen-

eralist. If the agent chooses to pass on the opportu-
nity, the net value accruing will be VGEN

O . Otherwise,
if the agent chooses to collaborate with an outside-
area specialist, the net value will be VGEN

OAS − cGEN; if
the agent collaborates with a within-area specialist, the
net value will be VGEN

WAS − cWAS; and if the agent col-
laborates with another generalist, the net value will
be VGEN

GEN − cGEN. It follows that it is optimal for gen-
eralists to collaborate with outside-area specialists if
max(VGEN ,VOAS) − VGEN > cGEN − cWAS, and to other-
wise collaborate with within-area specialists. In other
words, it is optimal for generalists to collaborate with
within-area specialists as long as within-area special-
ists provide a large enough cost advantage to offset the
premium value otherwise captured from collaborating
with outside-area specialists. Generalists find it opti-
mal to pursue their outside options if the average net

value of collaborating with outside-area specialists or
within-area specialists is lower than VGEN

O .
WAS. Consider the opportunity comes to a within-

area specialist. If the agent chooses to pass on the
opportunity, the net value accruing will be VWAS

O . Oth-
erwise, if the agent chooses to collaborate with an
outside-area specialist, the net value will be VWAS

OAS −
(cWAS + C); if the agent collaborates with a generalist,
the net value will be VWAS

GEN − cWAS; and if the agent col-
laborates with another within-area specialist, the net
value will be VWAS

WAS − (cWAS + C). It follows that it is
optimal for within-area specialists to collaborate with
generalists if (VOAS − VGEN) < C, and to otherwise col-
laborate with outside-area specialists. Within-area spe-
cialists find it optimal to pursue their outside option if
its value is higher than both VOAS −C and VGEN.

Proposition 1. The equilibrium outcome depends on the
difference between costs ci such that (a) if the difference is
sufficiently large, then, in equilibrium, within-area special-
ists and either generalists or outside-area specialists collab-
orate on the opportunity, with the realization determined
by the difference between (VOAS − VGEN) and C; (b) if the
difference is sufficiently small, approaching 0, then, in equi-
librium, generalists and outside-area specialists collaborate
on the opportunity, while within-area specialists are left to
pursue their outside options.

Proof. Consider the optimal choice of each agent i
who seeks to maximize his or her payoff. It follows
that when the difference between cWAS and cGEN is
sufficiently large (cWAS � cGEN), within-area special-
ists match with either generalists or outside-area spe-
cialists. Within-area specialists with outside options
valued higher than VOAS − C and VGEN, and general-
ists and outside-area specialists with outside options
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valued higher than the average net value of collabo-
rating with within-area specialists, pursue their out-
side options. Absent the cost advantage of within-area
specialists (i.e., the difference between costs cWAS and
cGEN is sufficiently small, approaching 0), in equilib-
rium, generalists and outside-area specialists match,
while within-area specialists are left to pursue their
outside options. Note that in this case, as a conse-
quence, total within-area output increases since both
generalists and outside-area specialists always prefer
to collaborate on the opportunity over pursuing their
outside options. �

This proposition captures the key argument of this
paper: the equilibrium collaboration behavior depends
on the difference between costs ci , and it is unclear how
the change in technology cost might affect this differ-
ence. The change can either increase returns to within-
area specialization, accentuating the cost advantage of
within-areas specialists, or be democratizing, reduc-
ing the difference between costs cWAS, cOAS, and cGEN
toward 0.
In the first case, the technology cost reduction

disproportionally benefits within-area specialists. For
example, the reduction in cost of motion-sensing
research technology facilitates access to a tool that exe-
cutes complex motion-sensing algorithms necessary
for capturing and analyzing 3D data. It follows that
the cost reduction might disproportionately benefit
motion-sensing specialists who have the knowledge to
efficiently interact with the 3D data output (e.g., free
up time otherwise spent on processing motion-sensing
data without the technology) and hence accentuate
their cost advantage. In the second case, the reduction
in technology cost might level the playing field bymak-
ing it easier for agents, regardless of their level of focal
area expertise, to engagewith the algorithms contained
in the technology. For example, researchers might
find it easier to include motion-sensing data in their
research, independent of their ex ante level of motion-
sensing expertise. Note that in both cases, total within-
area output increases following the reduction in cost,
in line with previous literature findings (e.g., Murray
and Stern 2007, Furman and Stern 2011,Williams 2013),
but the increase is potentially more accentuated when
the reduction in cost is democratizing.

In summary, the type of agent that plays an influen-
tial role following a technology cost reduction depends
on the incidence of cost reduction. Within-area spe-
cialists play an influential role when the cost reduc-
tion increases the returns to specialization. Conversely,
generalists and outside-area specialists play an influ-
ential role when the cost reduction is democratizing.
Thus, it is theoretically ambiguous how a technology
cost reduction might influence team formation, as it
depends on who benefits most from the reduction.

I empirically explore this mechanism in the context
of an unexpected and sudden reduction in the cost of
motion-sensing research technology.

3. Kinect
I focus on the events triggered by the launch of
Microsoft Kinect on November 4, 2010, as an exoge-
nous shock to academic research, which resulted in
a sudden and unexpected cost reduction of motion-
sensing research technology. Microsoft positioned its
technology as a revolutionary device for the gaming
industry, an add-on for the Xbox 360 that allowed
users to interact with video games through motion
sensing and without the need for a controller. How-
ever, no one, including Microsoft, anticipated the
wide-reaching effect Kinect would trigger on scholarly
research in electrical engineering, computer science,
and electronics.

3.1. Kinect as Gaming Technology
Microsoft launched Kinect to compete with Nintendo’s
Wii Remote and Sony’s PlayStation Move gesture-
recognition game controllers. Kinect was positioned
to take gesture-recognition video gaming one large
step further by altogether eliminating the need for a
controller.

The Kinect motion sensor comprises an RGB camera,
depth sensor, and multiarray microphones, providing
full-body 3D motion capture as well as facial, gesture,
and voice recognition. The sensor is superior to many
other 3D cameras in its movement capturing accuracy
and recognition capabilities for multiple simultaneous
subjects.

In June 2009, Microsoft announced Project Natal,
the development endeavor to create Kinect. Up until
November 2010, when Kinect was released, Microsoft
fostered excitement among gamers by presenting video
game demos at various events. However, nowhere
during this period was Microsoft or any other party
engaged in promoting, linking, or in any way sug-
gesting the use of the Kinect technology outside its
intended purpose as a gaming device.

3.2. Unexpected “Kinect Effect”
On November 4, 2010, Microsoft launched Kinect with
an advertising budget of US$500 million. These adver-
tising efforts did not include promoting Kinect outside
its intended gaming purpose.

The starting point of the unexpected Kinect Effect
in academic research can be traced to the bounty
AdaFruit Industries placed on Kinect’s launch day.
AdaFruit Industries is an electronics hobbyist com-
pany led by Limor Fried, an MIT electrical engi-
neering and computer science graduate influential
in the open hardware community. AdaFruit placed
the bounty, originally in the amount of US$1,000, in
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search of someone who could develop and distribute
an open source driver for Kinect. The driver would
make it possible to access data collected by Kinect’s
motion sensors. In other words, the driver would open
the pipeline through which Microsoft had designed
motion-sensing data to flow only between Kinect and
the Xbox 360 video games. The driverwould thus allow
researchers and enthusiasts to connect the pipeline to
any other project that would benefit from capturing
and interpreting motion-sensing data.
Just hours after AdaFruit made the search for an

open source driver public, Microsoft voiced its disap-
proval on CNET, saying that it “does not condone the
modification of its products. . . .With Kinect, Microsoft
built in numerous hardware and software safeguards
designed to reduce the chances of product tamper-
ing. Microsoft will continue to make advances in these
types of safeguards and work closely with law enforce-
ment and product safety groups to keepKinect tamper-
resistant” (Terdiman 2010).
AdaFruit did not withdraw the contest. Moreover, on

the same day of Microsoft’s announcement, AdaFruit
tripled its bounty to US$3,000. Six days later, on
November 10, 2010, a Spanish technology enthusiast,
HectorMartin Cantero, released the open source driver
and won the bounty. Microsoft reacted within a cou-
ple of days after the open source driver’s release. First,
the company’s public rhetoric became less negative
toward the events: “what has happened is someone
has created drivers that allow other devices to interface
with the Kinect for Xbox 360. . . .The creation of these
drivers, and the use of Kinect for Xbox 360 with other
devices, is unsupported. . . .We strongly encourage cus-
tomers to use Kinect for Xbox 360 with their Xbox 360
to get the best experience possible” (BBC News 2010).
A few days later, as the unexpected Kinect Effect con-
tinued to unfold, Microsoft dropped all concerns and
announced its intention to allow and support the unan-
ticipated developments. Microsoft recognized the ben-
efit to academic research andwas on board.11 From this
point on, the gates for creative development opened.

3.3. Kinect in Academia
Kinect appeals to academic research because it pro-
vides high-quality, low-price motion-sensing technol-
ogy.12 Kinect lowers the cost of employingmotion sens-
ing as a tool in the process of scientific research. Prior
to Kinect, motion-sensing technologies available for
academic research had lower depth-sensing quality,
and a price tag in the thousands of dollars. Microsoft
priced Kinect at around US$150 at launch and lower
thereafter.
As a motion-sensing research technology, Kinect

has attracted attention from researchers curious about
a variety of research topics. For example, computer
science scholars involved in computer learning algo-
rithms targeted at detecting human emotions have

been interested in Kinect’s advanced facial expression
recognition capabilities. Scholars focused on robotics
have liked the depth motion-sensing capabilities of
Kinect, which have aided in developing robots that
can more accurately navigate a complex landscape.
Researchers studying the development of technologies
for impaired individuals have engaged Kinect in craft-
ing algorithms to allow visually impaired subjects to
hear an accurate and timely description of their sur-
rounding environment as they attempt to walk around
in a room.

In summary, the broad use and impact of Kinect as
a motion-sensing research technology was not antici-
pated. As such, the setting provides a natural experi-
ment to draw more causal inferences (albeit not with-
out limitations) about observed follow-on research
developments triggered by a cost reduction in research
technology. Stated differently, the unanticipated Kinect
Effect provides an exogenous event that is correlated
with a cost reduction of motion-sensing research tech-
nology, but not with researchers’ characteristics and
their research behavior, except indirectly through its
effect on researchers’ publication trends and propen-
sity to respond to opportunities opened by the cost
reduction.

4. Data and Empirical Framework
4.1. Data Collection
I focus on academic publication data from researchers
in electrical engineering, computer science, and elec-
tronics. I collect data on every publication, early-access
publication, and conference proceeding academic
paper in electrical engineering, computer science, and
electronics during an eight-year period from 2005 to
2012 (inclusive). This sample represents six years of
data before and two years of data after Kinect’s launch.
The longer prelaunch data collection period facilitates
a better estimation of researcher types in electrical
engineering, computer science, and electronics. The
shorter postlaunch period is informative given the pub-
lication norms in electrical engineering, computer sci-
ence, and electronics. The publication cycle is fairly
short, and scholars usually make their research known
early in conference proceedings.

I collect these data from IEEE Xplore, the biblio-
graphical database maintained by the Institute of Elec-
trical and Electronics Engineers (IEEE). IEEE Xplore
provides access to “full-text documents from some of
the world’s most highly cited publications in electri-
cal engineering, computer science, and electronics.”13
I collect data on 1,336,866 publications in electrical
engineering, computer science, and electronics span-
ning the period of interest from 2005 to 2012 (inclusive).
This represents the full set of journal publications,
early-access publications, and conference proceedings
available through IEEE Xplore.
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4.2. Variables of Interest
I am interested in researchers’ collaborative behav-
ior relative to collaboration composition between
generalists, within-area specialists, and outside-area
specialists. My setting is a natural experiment trig-
gered by the launch of Kinect and its unexpected
use as a motion-sensing research technology. As such,
I distinguish between motion-sensing specialists and
non-motion-sensing specialists as within-area special-
ists and outside-area specialists, respectively. To do
so, I first identify the subset of publications within
my data set on topics that reference motion sensing.
Second, I construct a measure of diversification of
research portfolios at the individual level to distin-
guish between generalists, motion-sensing specialists,
and non-motion-sensing specialists.
To isolate these data, I use two features of the IEEE

database: (1) its full text search of all publications
included in the IEEE bibliographical database and
(2) that qualified IEEE personnel assign a limited set
of keywords to publications out of a controlled hierar-
chical vocabulary of about 9,000 words. This taxonomy
remains unchanged over the period of interest. I iden-
tify 7,276 unique keywords in my data set of publica-
tions spanning the period 2005 to 2012 (inclusive). Less
than 7% of publications have no keywords, so I drop
them from my data set. The remainder have between 1
and 18 keywords per publication. The IEEE taxonomy
hierarchically classifies these keywords under 51 main
research areas.
4.2.1. Motion-Sensing Academic Publications. I iden-
tify the sample set of motion-sensing academic pub-
lications by searching the full text of publications
included in the IEEE database. I search using a set of
key terms that I carefully identify as representative for
isolating publications on motion sensing (Appendix C,
Table C.2). Specifically, I search for broad as well
as more targeted terms referencing motion-sensing
technologies. I carefully selected these terms through
conversations with experts and cross-referenced them
against IEEE’s taxonomy. However, for two reasons,
I do not restrict mapping the boundaries of motion-
sensing to the list of 51 research areas under the
IEEE taxonomy. First, I am interested in a more gran-
ular identification of this research topic. For exam-
ple, most publications referencing motion sensing are
included under the “Computers and information pro-
cessing” research area of IEEE’s taxonomy. However,
this research area includes a variety of other research
topics. Second, a premise of the observed phenomenon
of interest is that the reduction in research technol-
ogy cost is an influencing factor for the evolution
of knowledge trajectories. As such, it is important
to avoid boundaries imposed by a rigid taxonomy
developed for rather static classification purposes. In
other words, I want to ensure that my definition of

motion-sensing research topics captures those publica-
tions that reference motion sensing, but are outside the
traditional “Computers and information processing”
research area. I identify a total of 17,196 academic pub-
lications referencing motion-sensing keywords over
the period of interest (2005–2012).

4.2.2. Generalists and Specialists. I distinguish be-
tween generalists and specialists based on ameasure of
diversification of research portfolios across the 51main
areas of research as identified by IEEE. I define gen-
eralists as scholars who have a diversification level of
research portfolio areas in the top 5% of the sample as
identified through an inspection of the set of keywords
assigned by IEEE from its taxonomy to scholars’ publi-
cations in the period 2005–2008. I define specialists as
the remainder of scholars in my sample.14

I use the period 2005–2008 to characterize the level
of diversification of scholars’ research portfolios. I use
the period 2009–2012 to estimate changes in collabora-
tion levels of these identified researcher types as trig-
gered by the launch of Kinect at the end of year 2010.
I refer to the period before Kinect’s launch since I focus
on estimating the collaborative behavior of researchers
following a research technology cost reduction. As
such, the relevant individual-level characteristics are
observed before Kinect’s arrival. Furthermore, I con-
sider 2008 as the cutoff year to allow for a comparison
of research outcomes two years before and two years
after the launch (2009–2012, inclusive), with researcher
types defined based on the research behavior prior to
this entire period.

To identify generalists and specialists, I exclusively
focus on the IEEE set of keywords, because the taxon-
omy provides a stable and thus tractable classification
of scholars’ research portfolio areas. Furthermore, the
fact that the research areas defined under the IEEE
taxonomy are broader not only does not negatively
impact my estimations, but also downplays generalists’
breadth of research portfolio areas.

I start by collecting all keywords per author per year
from researchers’ publication portfolios from 2005 to
2008 (inclusive). Next, I refer to the IEEE’s taxonomy
to identify each keyword’s main research area. I pro-
ceed by constructing a list of main research areas per
author per publication and their frequency of occur-
rence as a count of publications from each respective
main research area. Next, I convert the count into per-
centages and calculate the Euclidian distance in the
multidimensional space of 51 research areas.15 Note
that, by construction, the measure adjusts for the fact
that the probability of diverse keywords increases with
the number of publications per author. Specifically,
I consider the percentage of academic publications
across each of the 51 research areas for each researcher
rather than counts of publicationswithin the respective
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research areas. For example, a researcher with a pub-
lication portfolio of 10 papers in 10 different research
areas will have the same diversification level as another
researcher with 20 publications, two in each of the 10
research areas.
I construct the diversification measure to be equal to

1 minus the calculated Euclidian distance. The higher
the value, the higher the diversity of research portfolio
areas at the individual level i:

DiversificationOfResearchTopicsi

� 1−

√
51∑

k�1
CategoryPercentage2

ik .

The diversification measure, by construction, is higher
than or equal to 0 and never 1. The highest diversifica-
tion index is equal to 0.86 and characterizes researchers
who publish equal percentages of their publication
portfolio across the 51 research areas. The lowest
diversification index is equal to 0 and characterizes
researchers who publish exclusively in one research
area.
Researchers from the bottom 1% of my data have a

diversification level of up to 0.37. Researchers in the
top 1% of my data have a diversification level of 0.77 or
above. Themedian is 0.65, and themean is 0.63. I define
generalists as researchers with a diversification level in
the top 5%, equivalent to values above 0.75. I define
specialists as researchers with a diversification level
below 0.75. All results remain robust to considering
alternative definitions of generalists: top 10% (above
0.73) and top 25% (above 0.69). Furthermore, all results
remain robust to considering alternative definitions of
specialists as the bottom 5% (below 0.48), bottom 10%
(below 0.52), and bottom 25% (below 0.59). In addi-
tion, all results remain robust when combining these
definitions of generalists and specialists with match-
ing (coarsened exact matching (CEM)) on publication
productivity across the entire period before Kinect’s
launch (from 2005 to 2010).

4.3. Estimation Strategy
I explore changes in collaboration between general-
ists and specialists following the reduction in cost of
motion-sensing research technology guided by the for-
mal model predictions described in Section 2.2.

I start with a preliminary step to confirm the base-
line result of an overall increase in output following a
reduction in cost of research technology. The test is nec-
essary to establish a solid foundation for my empirical
analysis on changes in collaboration composition. The
discussion on optimal collaboration behavior informed
by the theoretical model notes that in all cases, total
within-area output increases following the reduction
in cost, with the increase potentially more accentuated
when the reduction in cost is democratizing. While the

fact that a reduction in cost leads to an increase in out-
put is not surprising (Murray and Stern 2007, Furman
and Stern 2011, Williams 2013), confirming this effect
in the case of Kinect ensures alignment with the theory
used to explicate collaboration behavior consequences.

Next, I follow a two-step estimation strategy explor-
ing changes in collaboration behavior after the reduc-
tion in cost. In line with the formal model, I distinguish
between generalists, within-area specialists (motion-
sensing specialists), and outside-area specialists (non-
motion-sensing specialists).16

In a first step, I test for changes in the collabora-
tion level of generalists, motion-sensing specialists, and
non-motion-sensing specialists relative to one another.
I do not directly focus on papers referencing motion
sensing since, by definition, non-motion-sensing spe-
cialists were not involved in motion-sensing projects
before Kinect. However, it is important to note that
I interpret these results in the context of the exoge-
nous change in cost of research technology triggered by
Kinect’s launch. Thus, the estimated changes in collab-
oration composition are implicitly attributed to coau-
thorship on motion-sensing academic publications.

Nevertheless, in a second step, I explicitly investi-
gate how the composition of teams varies on projects
referencing motion sensing by testing for changes in
the fraction of generalists, motion-sensing specialists
and non-motion-sensing specialists, as well as collab-
orating pairs of generalists, motion-sensing specialists,
and non-motion-sensing specialists after Kinect. The
estimation exploits the fact that researchers’ types are
set for the two-year prelaunch period. Thus, in iso-
lation, this estimation’s results should be interpreted
with care. However, in conjunction with the first set
of estimations, the results offer additional evidence
on changes in collaboration composition on motion-
sensing publications after the research technology cost
reduction.

4.3.1. Preliminary Step: Changes in Motion-Sensing
Output. I compare the number of publications refer-
encing motion-sensing keywords with the number of
publications referencing other research topics before
and after the launch of Kinect. I follow a difference-in-
differences estimation to reduce concerns of systematic
differences between publications that do and do not
reference motion-sensing keywords driving measured
changes in motion-sensing output. Formally, I estimate

LogPubCount jt

� β(MotionSensingPub j ×AfterKinectLauncht)
+ θj + γt + ε jt . (1)

LogPubCount jt is the log count of publications for each
research topic j published in year t,MotionSensingPub j
is an indicator variable equal to 1 if research topic j is
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motion sensing and 0 otherwise, and AfterKinect-
Launcht is an indicator variable equal to 1 if papers in
research topic j are listed as published in 2011 or 2012,
and 0 otherwise. I include research topic and time fixed
effects; hence, the main effects MotionSensingPub j and
AfterKinectLauncht drop out of the estimating equation.
I am interested in the estimated coefficient β of

the interaction between MotionSensingPub j and After-
KinectLauncht . I interpret a positive estimated value of
this coefficient as implying that the average number
of publications referencing motion-sensing keywords
increases disproportionately more relative to the aver-
age number of publications referencing other research
topic keywords, and that this increase is triggered by
the reduction in cost of motion-sensing research tech-
nology facilitated by the launch of Kinect. I conduct my
analysis on a panel data set of counts of academic pub-
lications per year per research topic from 2005 to 2012.
4.3.2. Two-Step Estimation: Changes in Collaboration
Composition. I test for changes in the collaboration
levels of specialists and generalists after the launch of
Kinect. I do so on a panel data set with the individual
researcher as the unit of analysis. I focus on two mea-
sures of collaboration: (1) the average number of coau-
thors per period (extensive collaboration level) and
(2) the average number of unique coauthors per period
(intensive collaboration level). I conduct a difference-
in-differences estimation to distinguish between the
changes in collaboration composition of researchers
relative to the three types that is directly attributable
to the reduction in cost of motion-sensing technol-
ogy from the underlying differences between the three
types of researchers over time.
Specifically, I compare the extensive and intensive

collaboration levels of generalists with those of special-
ists two years before and after the launch of Kinect.
Formally, I estimate

CollaborationLevelit
� β(Specialisti ×AfterKinectLauncht)+ δi + γt + εit . (2)

CollaborationLevelit is equal to the level of collabora-
tion of researcher i in year t; Specialisti is an indica-
tor variable equal to 1 if researcher i is, in turn, a
motion-sensing specialist or a non-motion-sensing spe-
cialist and 0 otherwise; and AfterKinectLauncht is an
indicator variable equal to 1 if the year of observa-
tion t is either 2011 or 2012, namely, after Kinect’s
launch. This applies to both generalists and specialists.
I include time and individual fixed effects; hence, the
main effects Specialisti and AfterKinectLauncht drop out
of the estimating equation.
I am interested in the estimated coefficient β of the

interaction term between Specialisti and AfterKinect-
Launcht . The interaction term equals 1 for collabora-
tion levels of each of the two types of specialists after

the launch of Kinect, and 0 for all others. I interpret a
positive estimated value of this coefficient as implying
that the average collaboration level of each respective
type of specialist increases disproportionately more
relative to the average collaboration level of the other
researchers. Similarly, I interpret a negative estimated
value of this coefficient as implying a decrease in the
average collaboration level of the respective type of
specialist relative to the collaboration level of the other
researchers. Furthermore, the estimated increase or
decrease is triggered by the reduction in cost ofmotion-
sensing research technology facilitated by the launch
of Kinect.

Next, I explicitly test how these changes in collabora-
tion are reflected after launch on publications referenc-
ing motion-sensing keywords. I conduct this second
part of my analysis on a data set at the academic pub-
lication level, rather than at the individual researcher
level.

In a difference-in-differences estimation, I first focus
on identifying changes in the occurrence of gen-
eralists, motion-sensing specialists, and non-motion-
sensing specialists on papers referencing motion-
sensing keywords after the launch of Kinect. Next,
I test for changes in coauthorship composition between
(1) generalists and non-motion-sensing specialists,
(2) generalists and motion-sensing specialists, and
(3) non-motion-sensing specialists and motion-sensing
specialists. Formally, I estimate

TeamCompositionDummy jt

� β(MotionSensingPub j ×AfterKinectLauncht)
+MotionSensingPub j + γt + ε jt . (3)

TeamCompositionDummy jt is a dummy variable equal to
1 if the coauthorship team on publication j includes the
researcher types under consideration, and 0 otherwise;
MotionSensingPub j is a dummy equal to 1 if publication
j is a paper referencing motion-sensing research key-
words, and 0 otherwise; and AfterKinectLauncht is an
indicator variable equal to 1 if the year of observation t
is either 2011or 2012, namely, afterKinect’s launch. This
applies to both academic papers referencing motion-
sensing keywords and those that do not. I include time
fixed effects; hence, the main effect AfterKinectLauncht
drops out of the estimating equation.

I am interested in the estimated coefficient β of
the interaction term (MotionSensingPub × AfterKinect-
Launch). I interpret a positive (negative) estimated
value of this coefficient as implying that the aver-
age collaboration occurrence between the respective
researcher types increases (decreases) disproportion-
ately more relative to the average collaboration occur-
rence between other researchers, and the estimated
change is triggered by the cost reduction of motion-
sensing research technology facilitated by the launch
of Kinect.
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Table 1. Descriptive Statistics

No. of
Mean Std. dev. Minimum Maximum observations

Individual level panel (using 2009–2012 publication data)
Intensive collaboration 2.522 2.606 0 23 387,196
Extensive collaboration 2.846 2.825 0 23 387,196
After Kinect launch 0.500 0.500 0 1 387,196
Motion-sensing specialist 0.073 0.259 0 1 387,196
Non-motion-sensing specialist 0.438 0.496 0 1 387,196
Motion-sensing specialist× 0.036 0.187 0 1 387,196

After Kinect launch
Non-motion-sensing specialist× 0.438 0.496 0 1 387,196

After Kinect launch
Publication level panel 2009–2012 (restricted to coauthored)

With generalists 0.207 0.406 0 1 600,756
With non-motion-sensing 0.985 0.122 0 1 600,756

specialists
With motion-sensing specialists 0.203 0.403 0 1 600,756
Generalists and non-motion-sensing 0.159 0.366 0 1 600,756

specialists
Generalists and motion-sensing 0.006 0.076 0 1 600,756

specialists
Motion-sensing specialists and 0.150 0.357 0 1 600,756

non-motion-sensing specialists
After Kinect launch 0.471 0.499 0 1 600,756
Motion-sensing pub 0.014 0.117 0 1 600,756
Motion-sensing pub× 0.008 0.089 0 1 600,756

After Kinect launch
Diversification index (using 2005–2008 publication data)

Diversification index 0.635 0.084 0 0.8 387,196
Publications 2.734 3.922 0.25 141.75 387,196
Diversification index generalist 0.760 0.011 0.75 0.8 19,980
Publications generalist 9.254 10.416 0.5 141.75 19,980
Diversification index 0.676 0.054 0.24 0.74 28,068
motion-sensing specialists

Publications motion-sensing 3.974 4.165 0.25 53.25 28,068
specialists

Diversification index 0.624 0.081 0 0.74 339,148
non-motion-sensing specialists

Publications non-motion-sensing 2.247 2.621 0.25 59.25 339,148
specialists

I conduct my analysis on two data sets, both ranging
from 2009 to 2012, two years before and two years after
the launch of Kinect (at the end of 2010). The fist data
set is a panel at the individual author level. The second
data set is at the publication level.

The first data set comprises researchers who pub-
lished throughout the course of my entire period of
interest, from 2005 to 2012. I restrict my analysis to
this set of researchers since I need the 2005–2008 pub-
lication period to construct the diversification index
and identify generalists and specialists. I require the
2009–2012 period to estimate changes in the collabo-
ration behavior of generalists and specialists, triggered
by the cost reduction of motion-sensing research tech-
nology. There are a total of 96,799 distinct researchers
in my data set. The second data set is comprised of
all academic publications from 2009 to 2012, inclu-
sive of those researchers included in the first data
set. There are a total of 748,922 such publications.

I estimate Equation (2) using the first data set and
Equation (3) using the second data set (descriptive
statistics are included in Table 1). Overall, the differ-
ence between the two data sets is the unit of analysis,
which changes from the individual researcher to the
academic publication.

5. Results
5.1. Changes in Motion-Sensing Output
I present results of estimating Equation (1) in Table 2.
In columns (1) and (2), I compare changes in motion-
sensing output with the publication rate in other
research topics (Appendix C, Table C.2). I define the
topics using the same keyword approach and rationale
used in identifyingmotion-sensing publications. In col-
umn (3), I consider control research areas from IEEE’s
taxonomy. The mean number of motion-sensing publi-
cations per year in the period before Kinect’s launch is
989.67. After the launch, this value increases to 2,425.
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Table 2. Researchers Publish Disproportionately More on Topics Referencing Motion-Sensing Keywords After the
Launch of Kinect

Dependent variable: Log of count of publications per year per research topic or research area

(1) (2) (3)
Compared to research topics close in Compared to all Compared to all research

volume before Kinect’s launch research topics areas (IEEE taxonomy)

MotionSensingPub×AfterKinectLaunch 0.3919∗∗∗ 0.4727∗∗∗ 0.5651∗∗∗
(0.1105) (0.0690) (0.1017)

MotionSensingPub −4.8360∗∗∗
(0.1838)

Year fixed effects Yes Yes Yes
Research topic fixed effects Yes Yes
Research area fixed effects Yes
R-squared 0.980 0.984 0.929
Observations 64 104 725

Notes. The data set is a panel of counts of publications between 2005 and 2012. The unit of analysis is year-research topic or year-research
areas. I list all research topics and keywords used to identify them in Appendix C, Table C.2. Research areas are those identified in the IEEE
taxonomy. All models are ordinary least squares with robust standard errors clustered by research topic or research area.
∗∗∗Significant at 1%.

The main result of interest is the estimated coef-
ficient of the interaction term (MotionSensingPub j ×
AfterKinectLauncht), which is positive and statistically
significant across all estimations. This implies that the
difference between the number of publications refer-
encing motion-sensing keywords and the number of
publications from other research topics is greater after
rather than before the reduction in cost of motion-
sensing technology triggered by the launch of Kinect.
More specifically, I find evidence of up to a 57% increase
in publications referencing motion-sensing keywords
relative to otherpublications, after the reduction in cost.
Figure 2 provides further evidence of the timing of

this effect. Each point represents the estimated differ-
ence in yearly log publication counts between papers
referencing motion-sensing keywords and papers ref-
erencing other research topics, all relative to the base
year of 2010. The graph shows that the difference
in publication rates between papers that reference
motion-sensing keywords and those that do not is
small and stable until the launch of Kinect at the end of
2010. Thereafter, the difference increases, as evidenced
by the higher coefficients.

5.2. Changes in Collaboration Composition
Havingestablished thebaseline effect of overall changes
in output rate, I now explore changes in collabora-
tion between generalists and specialists following the
reduction in cost of motion-sensing research technol-
ogy, guided by the formal model predictions described
in Section 2.2. First, I observe that researchers’ col-
laboration and diversification levels are codetermined.
Indeed, before the launch of Kinect, generalists collab-
orate more than specialists both at the intensive (num-
ber of distinct collaborators per period) and extensive
(number of collaborators per period) levels (Table 3).

Thus, while it is unclear if diversity of individual
research portfolio areas results from increased collabo-
ration or vice versa, the data confirmcollaboration as an
influential factor relative to generalists’ role in the orga-
nization of knowledge creation.

Next, I test for changes in the collaboration lev-
els of generalists, motion-sensing specialists, and non-
motion-sensing specialists relative to one another after
the launch of Kinect. As before, I focus on two mea-
sures of collaboration: extensive and intensive. I start
by comparing mean collaboration levels of generalists,

Figure 2. (Color online) Disproportionate Increase in
Motion-Sensing Publications After Kinect

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

2005 2006 2007 2008 2009 2010 2011 2012

Lo
g 

co
un

t o
f p

ub
lic

at
io

ns

Estimated difference between papers referencing
motion sensing and papers referencing other topics

Notes. I base this figure on six years of publication data before the
launch of Kinect (2005–2010) and two years of publication data after
the launch of Kinect (2011–2012). Each point on the graph represents
the coefficient value on the covariate MotionSensingPub × Year and
thus describes the relative difference in log publication rates between
papers referencing motion-sensing keywords and other papers that
year (research topics close in volume as controls). The bars surround-
ing each point represent the 95% confidence interval. All values are
relative to the base year of 2010. I include the same results in table
format in Appendix C, Table C.1.
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Table 3. Mean Differences in Collaboration Rates Between
Generalists, Motion-Sensing Specialists, and Non-Motion-
Sensing Specialists Before and After Kinect’s Launch

Collaboration— Collaboration—
Intensive Extensive
(mean) (mean)

Observations Before After Before After

Generalist 4,995 3.251 3.404 3.765 3.836
Motion-sensing 7,017 2.544 2.707 2.992 3.065
specialist

Non-motion- 84,787 2.208 2.722 2.532 3.016
sensing
specialist

Notes. The data set is a panel at the author level based on publication
data between 2009 and 2012. The number of observations indicates
the number of researchers of each type in the sample. “Before” values
refer to the period before Kinect’s launch (2009–2010). “After” values
refer to the period after Kinect’s launch (2011–2012).

motion-sensing specialists, and non-motion-sensing
specialists to one another, before and after the research
technology cost reduction (Table 3). I observe that
while all researchers increase their mean collaboration
level after the launch of Kinect, the increase is high-
est for non-motion-sensing specialists. This increase
aligns with the formal model proposition, in which
the decrease in cost is democratizing, leading to an
increased involvement of non-motion-sensing special-
ists in team knowledge production.
However, there may be systematic differences be-

tween generalists, motion-sensing specialists, and non-
motion-sensing specialists that are unaccounted for
when comparing these simple means. As such, I turn
to the regression estimate described by Equation (2).
I document the results of this estimation in Table 4.
Columns (1) and (3) report results for non-motion-

Table 4. After Kinect’s Launch, Non-Motion-Sensing (Motion-Sensing) Specialists Increase (Decrease)
Collaboration

Dependent variable: Count of collaboration per author per year

(1) (2) (3) (4)
Intensive (incidence ratio) Extensive (incidence ratio)

NonMotionSensingSpecialist×AfterKinectLaunch 1.1673∗∗∗ 1.1656∗∗∗
(0.0074) (0.0068)

MotionSensingSpecialist×AfterKinectLaunch 0.8738∗∗∗ 0.8704∗∗∗
(0.0077) (0.0070)

Year fixed effects Yes Yes Yes Yes
Author fixed effects Yes Yes Yes Yes
Log likelihood −530,866.74 −531,070.02 −557,518.65 −557,732.45
Observations 387,196 387,196 387,196 387,196

Notes. The data set is a panel at the author level based on publication data between 2009 and 2012. I define generalist and
specialist types using publication data between 2005 and 2008. The comparison group for non-motion-sensing specialists
is comprised of motion-sensing specialists and generalists. The comparison group for motion-sensing specialists is
comprised of non-motion-sensing specialists and generalists. The unit of analysis is the author-year. All models are
Poisson with robust standard errors clustered at the level of fixed effects.
∗∗∗Significant at 1%.

sensing specialists, while columns (2) and (4) report
results for motion-sensing specialists. The result
supports the observation that non-motion-sensing
specialists increase their collaboration level dispropor-
tionately more than generalists and motion-sensing
specialists after the launch of Kinect, while motion-
sensing specialists decrease it. Specifically, non-
motion-sensing specialists disproportionately increase
their intensive and extensive collaboration levels by
17% relative to other researchers, after the launch of
Kinect. At the same time, motion-sensing specialists
decrease their intensive and extensive collaboration
levels by 13% relative to all other researchers, after the
launch of Kinect.

Next, I explicitly test whether the mechanism de-
scribed by the theoretical model explains the increase.
Specifically, when the reduction in cost is democratiz-
ing, the proposition predicts an increased involvement
of non-motion-sensing specialists on motion-sensing
projects after the launch of Kinect through collabora-
tion with generalists. Furthermore, the model predicts
a decrease in collaboration of generalists and motion-
sensing specialists. I test for this mechanism using
Equation (2) on the individual-level panel, restricted to
collaborations that include generalists.

Table 5 presents results of the estimated changes
in collaboration with generalists. In line with the
model’s prediction of reductions in cost that democ-
ratize, I find evidence of a disproportionate increase
in collaboration between generalists and non-motion-
sensing specialists, relative to collaboration between
generalists andmotion-sensing specialists or other gen-
eralists, after the launch of Kinect. Specifically, non-
motion-sensing specialists disproportionately increase
their intensive collaboration level with generalists by
22%, and their extensive collaboration level by 23%,
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Table 5. After Kinect’s Launch, Non-Motion-Sensing (Motion-Sensing) Specialists Increase (Decrease)
Collaboration with Generalists

Dependent variable: Count of collaboration per author per year

(1) (2) (3) (4)
Intensive (incidence ratio) Extensive (incidence ratio)

NonMotionSensingSpecialist×AfterKinectLaunch 1.2190∗∗∗ 1.2294∗∗∗
(0.0226) (0.0216)

MotionSensingSpecialist×AfterKinectLaunch 0.7609∗∗∗ 0.7531∗∗∗
(0.0209) (0.0192)

Year fixed effects Yes Yes Yes Yes
Author fixed effects Yes Yes Yes Yes
Log likelihood −48,497.91 −48,498.44 −53,082.52 −53,082.93
Observations 168,844 168,844 168,844 168,844

Notes. The data set is a panel at the author level based on publication data between 2009 and 2012. I define generalist and
specialist types using publication data between 2005 and 2008. The comparison group for non-motion-sensing specialists is
comprised of motion-sensing specialists and generalists. The comparison group for motion-sensing specialists is comprised
of non-motion-sensing specialists and generalists. The unit of analysis is the author-year. All models are Poisson with robust
standard errors, clustered at the level of fixed effects.
∗∗∗Significant at 1%.

relative to other researchers collaborating with gener-
alists, after the launch of Kinect. Moreover, and also
in line with the model’s predictions, motion-sensing
specialists decrease their intensive and extensive col-
laboration levels with generalists by 24%, relative to
generalists collaborating with other researchers, after
the launch of Kinect.

Next, I test whether this main result remains robust
to alternative specifications for identifying generalists
and specialists. Thus far, I have identified generalists
as researchers with a diversification level in the top 5%
(above 0.75), and specialists as the remainder. While
the results remain robust to considering definitions of
generalists as researchers with diversification levels in
the top 10% and top 25%, there might be concerns that

Table 6. Robustness of Non-Motion-Sensing (Motion-Sensing) Specialists’ Increased (Decreased) Collaboration
with Generalists

Dependent variable: Count of collaboration per author per year

CEM: Matching by publication
Specialists as bottom 5 percentile count in the before period

(1) (2) (3) (4) (5) (6) (7) (8)
Intensive Extensive Intensive Extensive

(incidence ratio) (incidence ratio) (incidence ratio) (incidence ratio)

NonMotionSensingSpecialist× 1.4961∗∗∗ 1.5410∗∗∗ 1.0757∗∗∗ 1.0950∗∗∗
AfterKinectLaunch (0.0983) (0.1004) (0.0144) (0.0130)

MotionSensingSpecialist× 0.3914∗∗∗ 0.3367∗∗∗ 0.8941∗∗∗ 0.8709∗∗∗
AfterKinectLaunch (0.1275) (0.1130) (0.0124) (0.0105)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Author fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Log likelihood −6,825.29 −6,843.28 −7,489.87 −7,512.02 −57,498.63 −57,492.87 −66,718.94 −66,707.73
Observations 22,468 22,468 22,468 22,468 163,656 163,656 163,656 163,656

Notes. The data set is a panel at the author level based on publication data between 2009 and 2012. I define generalist and specialist types using
publication data between 2005 and 2008. The comparison group for non-motion-sensing specialists is comprised of motion-sensing specialists
and generalists. The comparison group for motion-sensing specialists is comprised of non-motion-sensing specialists and generalists. The unit
of analysis is the author-year. All models are Poisson with robust standard errors clustered at the level of fixed effects.
∗∗∗Significant at 1%.

the findings are not driven by heterogeneity in expo-
sure to knowledge between specialists and generalists,
since the specialists group remains quite diversified.
To address this concern, I provide results (Table 6,
columns (5)–(8)) using an alternative definition of spe-
cialists as individuals with a diversification level in
the bottom 5% (below 0.48), while continuing to define
generalists as researchers with a diversification level
in the top 5% (above 0.75). Under this specification
the results not only continue to hold, but the mag-
nitude increases in line with the build-in increased
gap in diversification level between generalists and
specialists, as informed by the mechanism described in
the theoretical model. Specifically, non-motion-sensing
specialists disproportionately increase their intensive
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collaboration level with generalists by 50%, and their
extensive collaboration level by 54%, relative to other
researchers collaborating with generalists, after the
launch of Kinect. Furthermore,motion-sensing special-
ists decrease their intensive collaboration level with
generalists by 61%, and their extensive collaboration
level with generalists by 66%, relative to generalists
collaborating with other researchers, after the launch
of Kinect. The results remain robust to considering
alternative definitions of specialists as researchers with
diversification levels in the bottom 10% (below 0.52)
and bottom 25% (below 0.59).
However, concerns remain that the definitions of

generalists and specialists capture unequal productiv-
ity levels rather than diversification across knowledge
areas. Indeed, during the period used to calculate the
diversity index (2005–2008), generalists (researchers in
the top 5%) published an average of 36.99 papers,
whereas specialists (all other) published an average
of 9.48 papers. While the difference could be a direct
result of the higher mean levels of collaboration of
generalists, rather than knowledge creation ability—
when considering a number of publications weighted
by the number of coauthors per publication, the differ-
ence in count is reduced—the concern remains. I take
two approaches to address it. First, I account for the
difference in the diversification measure calculation.
Specifically, the calculation considers percentages of
academic papers across the 51 research areas rather
than counts of publications. Nevertheless, systematic
differences between high and low productive individ-
uals could drive the results. As such, I repeat the esti-
mation of Equation (2) using CEM (Iacus et al. 2011,
2012). I match on productivity—counts of academic
publications per researcher—for the 2005–2008 period
as well as for the period before Kinect’s launch (2009–
2010), per year. I present results of this estimation in
Table 6 (columns (5)–(8)). The direction of changes in
collaboration levels persists,while, not surprisingly, the
magnitude decreases. Specifically, non-motion-sensing
specialists disproportionately increase their postlaunch
intensive collaboration levelwithgeneralists by8%, and
their extensive collaboration level by 10%, relative to

Table 7. Matching Ensures the Results Are Not Driven by Productivity Differences Between
Generalists and Specialists Before Kinect’s Launch

Full sample Matched sample (CEM)

(1) (2) (3) (4) (5) (6)
Generalists Specialists t-stat. Generalists Specialists t-stat.

Publication count 2005–2008 36.99 9.48 185.75 25.99 25.61 1.46
Publication count 2009 12.33 2.54 183.47 7.87 7.83 0.49
Publication count 2010 14.14 2.70 186.97 8.69 8.56 1.24
Observations 17,596 151,248 15,028 148,628

Notes. The full sample refers to the data used in estimating the results in Table 5. The matched sample refers to the data
used in estimating the results in Table 6, columns (5)–(8).

other researchers collaborating with generalists. At the
same time, motion-sensing specialists decrease their
intensive collaboration level with generalists by 10%,
and their extensive collaboration level with generalists
by 13%, relative to generalists collaborating with other
researchers, after the launch of Kinect. Table 7 shows
the balance in productivity rates betweenmatched spe-
cialists and generalists. While, as anticipated, large dis-
parities characterize the full sample (columns (1)–(3)),
the CEM procedure balances the productivity rates
(columns (4)–(6)) and thus ensures the results on
changes in collaboration composition are not driven by
unequal productivity levels, but rather by heterogene-
ity in diversification across knowledge areas.

Overall, the results indicate an increase in collab-
oration between non-motion-sensing specialists and
generalists, and a decrease in collaboration between
motion-sensing specialists and generalists. Under the
most conservative estimation, the results indicate the
effect occurs for 1 in 10 papers.

Thus far, I have not directly focused on papers re-
ferencing motion sensing since, by definition, non-
motion-sensing specialistswerenot involved inmotion-
sensing projects before Kinect. As described in
Section 4.3, I interpret these results in the context of the
exogenous change in cost of research technology trig-
gered by Kinect’s launch. Thus, the estimated changes
in collaboration composition are implicitly attributed to
motion-sensing publications. Additionally, I follow the
estimation strategy described in Equation (3) and test
how these changes in collaboration are reflected in pub-
lications referencingmotion-sensingkeywordsafter the
launch of Kinect.

I turn to the data set at the publication level and
estimate how the composition of collaboration changes
on publications referencing motion-sensing keywords
after the launch of Kinect, relative to other publica-
tions. I restrict my analysis to academic publications
with at least two authors. I investigate how the compo-
sition of teams varies on projects referencing motion-
sensing keywords by explicitly testing for changes in
the fractions of generalists, motion-sensing specialists,
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Table 8. Changes in Authorship Composition for Papers Referencing Motion Sensing After Kinect

Dependent variable: Dummy for collaboration instances

(1) (2) (3)
With non-motion-sensing specialists With generalists With motion-sensing specialists

MotionSensingPub×AfterKinectLaunch 0.3378∗∗∗ −0.0021 −0.3605∗∗∗
(0.0106) (0.0061) (0.0177)

MotionSensingPub −0.4107∗∗∗ 0.0073 0.7421∗∗∗
(0.0101) (0.0044) (0.0175)

Year fixed effects Yes Yes Yes
Research area fixed effects Yes Yes Yes
R-squared 0.074 0.003 0.044
Observations 600,756 600,756 600,756

Notes. The data set is a panel of publication data between 2009 and 2012. I define generalist and specialist types using publication data between
2005 and 2008. The unit of analysis is the publication. I restrict the sample to publications with more than one author. All models are ordinary
least squares with robust standard error clustered by research area.
∗∗∗Significant at 1%.

and non-motion-sensing specialists (Table 8), as well
as collaborating pairs of generalists, motion-sensing
specialists, and non-motion-sensing specialists, after
Kinect (Table 9).
Table 8 indicates an increase in the occurrence of

non-motion-sensing specialists on coauthored papers
referencing motion-sensing keywords after the launch
of Kinect (column (1)), no significant change in the
occurrence of generalists (column (2)), and a de-
crease in the occurrence of motion-sensing special-
ists (column (3)). These results align with the mecha-
nism described by the theoretical model. Specifically,
when the reduction in cost of research technology
is democratizing, the optimal collaboration changes
from motion-sensing specialists working with gener-
alists to generalists working with non-motion-sensing
specialists. In Table 9, I present results that further
support this result at the pair level. Column (1)

Table 9. Changes in Authorship Composition (Collaboration Between Generalists, Non-Motion-Sensing Specialists, and
Motion-Sensing Specialists) for Papers Referencing Motion Sensing After Kinect

Dependent variable: Dummy for collaboration instances between generalists and specialists

(1) (2) (3)
Generalist and Generalist and Motion-sensing and

non-motion-sensing specialist motion-sensing specialist non-motion-sensing specialists

MotionSensingPub× 0.0802∗∗∗ −0.0861∗∗∗ −0.0306+

AfterKinectLaunch (0.0038) (0.0061) (0.01933)
MotionSensingPub −0.1432∗∗∗ 0.1076∗∗∗ 0.2919∗∗∗

(0.0036) (0.0045) (0.0151)
Year fixed effects Yes Yes Yes
Research area fixed effects Yes Yes Yes
R-squared 0.004 0.014 0.019
Observations 600,756 600,756 600,756

Notes. The data set is a panel of publication data between 2009 and 2012. I define generalist and specialist types using publication data between
2005 and 2008. The unit of analysis is the publication. I restrict the sample to publications with more than one author. All models are OLS with
robust standard error clustered by research areas.

+Significant at 15%; ∗∗∗significant at 1%.

shows a positive and statistically significant increase
in the frequency of teams comprised of generalists
and non-motion-sensing specialists, and a decrease
in the frequency of teams comprised of generalists
and motion-sensing specialists (column (2)) on pub-
lications referencing motion-sensing keywords after
the launch of Kinect relative to other academic pub-
lications. There is an 8% increase in the occurrence
of collaboration between generalists and non-motion-
sensing specialists on motion-sensing papers after the
launch of Kinect, relative to before, a 3% decrease in the
occurrence of collaboration between motion-sensing
specialists and non-motion-sensing specialists, and a
9% decrease in the occurrence of collaboration between
generalists and motion-sensing specialists.

I interpret these results as offering strong evidence
of a disproportionately greater increase in collabo-
ration between generalists and non-motion-sensing
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specialists relative to other collaborating types after the
launch of Kinect. The effect aligns with the mecha-
nism described by the theoretical model’s predictions
where the cost reduction is democratizing. Specifi-
cally, following the reduction in cost, generalists play
an influential role in facilitating involvement of non-
motion-sensing specialists, as reflected in team forma-
tion changes. The estimated variance in magnitudes of
the collaboration effect also aligns with the theorized
role of breadth of knowledge exposure as an influential
factor in team formation.
A comparison of output values as measured by

citations further strengthens this interpretation and
alignment with the theoretical model. Specifically,
motion-sensing publications authored by generalists
and non-motion-sensing specialists after Kinect receive
an average of 2.72 citations, while all other collabora-
tions receive an average of 1.84 citations, conditional
on being cited. The difference is statistically significant
at the 2.5% level. I interpret this result as additional
evidence of the optimal change in collaboration com-
position triggered by the reduction in cost of motion-
sensing research technology.

6. Discussion and Conclusion
I examine implications of technology cost reductions
on team formation by exploiting the launch of Kinect
as an exogenous event that suddenly and unexpectedly
reduced motion-sensing technology costs. I find evi-
dence of an increase in collaboration between general-
ists and non-motion-sensing specialists driven by coau-
thorship on publications referencing motion-sensing
keywords after Kinect’s launch. The empirical results
indicate the effect occurs for 1 in 10 papers. The shift
in collaboration composition is consistent with the
mechanism emphasized in the formal model where
the reduction in cost is democratizing and the opti-
mal collaboration composition is altered to reduce ex
ante optimal involvement of within-area specialists
and to facilitate involvement of outside-area specialists
through collaboration with generalists. Stated differ-
ently, with great cost reductions, the technology sub-
stitutes for the need to include within-area specialists
in coauthorship teams when the knowledge required
is embedded in the technology. The consequence is an
increase in coauthorship capacity, otherwise limited by
collaboration costs (Bikard et al. 2015), to include spe-
cialists from other research areas. Generalists appear to
act as intermediaries in the process.

The results are not without limitations. While the
launch of Kinect offers a plausible natural experi-
ment to draw more causal inferences regarding the
impact of research technology costs on team for-
mation, the general limitations of a natural experi-
ment apply. Furthermore, Kinect represents only one

instance of research technology cost reduction, sub-
ject to the idiosyncrasies of computer science, electri-
cal engineering, and electronics research and domain-
specific reliance on research equipment.

At the same time, by and large, team formation is
difficult to study with observational data because of
selection concerns, which constrains most studies to
lab experiments. The case of Kinect offers an opportu-
nity to study team formation in a setting that is oth-
erwise difficult to simulate in the lab. While there are
uncontested advantages of lab experiments, limitations
remain, particularly relative to the generalizability to
complex practical settings. This study extends efforts
in this direction.

All in all, the results suggest a potentially signifi-
cant impact of the relationship between human capital
and technology costs on inventive activity. The find-
ings contribute to the literature on team formation, the
literature on productivity in knowledge creation, and
the emerging literature on the role of research equip-
ment in knowledge production (e.g., Ding et al. 2010,
Furman and Stern 2011, Murray et al. 2016).

First, reducing technology costs might be a pro-
ductive strategy for decreasing collaboration costs
and enabling knowledge creation that combines more
broadly across the frontier. Specifically, reductions
in cost of technology might lessen the “knowl-
edge burden” (Jones 2009) resulting from continuous
knowledge accumulation by substituting the need for
within-area expertise with availability of technology.
Furthermore, as a consequence, within-area scientific
discoveries might be propelled forward. For example,
after the reduction in cost, motion-sensing specialists
turn to optimal outside options that might involve cre-
ating the newgeneration ofmotion-sensing technology.

These findings suggest implications for domains in
which collaboration decisions are discretionary, such
as scientific research and entrepreneurship, as well
as settings where managers coordinate team forma-
tion. Understanding factors that influence innovation
is crucial for both organizational performance and for
informing policy. For example, prior work has empha-
sized the strategic importance of R&D engagement
as a channel for firms to gain new knowledge and
increase productivity (e.g., Cockburn and Henderson
1998, Owen-Smith and Powell 2004). Firms could con-
sider subsidies to certain technologies as strategies
to influence these outcomes. Similarly, policy could
strategically evaluate the funding of research technolo-
gies to achieve the most efficient levels of diversity
in knowledge creation required for economic growth
(e.g., Aghion et al. 2008, Acemoglu 2012).

Second, the role of generalists suggests changes in
the organization of inventive activity relative to the
division of labor in knowledge creation. Specifically,
individuals with broader exposure to knowledge play
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an important role in team formation in environments
with democratizing technology cost reductions. More-
over, the role of generalists in the organization of
knowledge creation might grow in significance, as
knowledge accumulation leads to specialization in pro-
gressively narrower niches (Jones 2009). This obser-
vation suggests a departure from incentives designed
to encourage specialization in knowledge creation and
toward incentives that also encourage diversification,
with implications for private and public institutions, as
well as for policy makers.
More generally, the observations open questions for

future research regarding the interrelated roles of tech-
nology costs and breadth of expertise in influenc-
ing innovation not only at the individual level, but
also at the institutional and field levels. For example,
does variation in technology costs altering researchers’
topics lead to more diversification or convergence in
research domains? What is the relationship between
the frequency of technological advancements and
the optimal distribution of individual- and field-level
diversification? Related, to what extent does the cost
regime influence entry and exit into research domains
or scientific careers? Does variation in costs of technol-
ogy accentuate or decrease the gap between high- and
low-performing institutions and regions?

Overall, the findings of this study suggest a nuanced
relationship between human capital and technology in
the process of cumulative knowledge creation. Suffi-
ciently large reductions in technology costs carry the
potential to lead to more diverse teams, and hence to
generate more impactful discoveries (e.g., Weitzman
1998, Wuchty et al. 2007, Uzzi et al. 2013). More
broadly, technology costs emerge as an influential
factor in enriching diversity in knowledge creation,
an outcome that has been shown to fuel economic
progress (Acemoglu 2012).
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Appendix A. Formal Model Extensions
A.1. Collaborative Projects That Include a Generalist

Have the Highest Value VGEN
Agents’ Optimal Choices. I review the optimal choice of
each agent i who seeks to maximize his or her payoff given
the assumed costs and values. I do so to identify the condi-
tions under which each type will collaborate with another
type and when they will not. I assume a collaboration occurs
only if the action is value maximizing for each party.

OAS. Consider that the opportunity comes to an outside-
area specialist. If the agent chooses to pass on the opportu-
nity, the net value accruing will be VOAS

O . Otherwise, if the

agent chooses to collaborate with a within-area specialist,
the net value will be VOAS

WAS − (cWAS + C); if the agent collab-
orates with a generalist, the net value will be VOAS

GEN − cGEN;
and if the agent collaborates with another outside-area spe-
cialist, the net value will be VOAS

OAS − (cOAS + C). It follows that
it is optimal for outside-area specialists to collaborate with
generalists if VGEN − VOAS > cGEN − (cWAS + C), and to other-
wise collaborate with within-area specialists. In other words,
it is optimal for outside-area specialists to collaborate with
within-area specialists as long as within-area specialists pro-
vide a large enough cost advantage to offset the premium
value otherwise captured from collaborating with general-
ists. Outside-area specialists find it optimal to pursue their
outside options if the average net value of collaborating with
generalists or within-area specialists is lower than VOAS

O .
GEN. Consider that the opportunity comes to a general-

ist. If the agent chooses to pass on the opportunity, the net
value accruing will be VGEN

O . Otherwise, if the agent chooses
to collaborate with an outside-area specialist, the net value
will be VGEN

OAS − cGEN; if the agent collaborates with a within-
area specialist, the net value will be VGEN

WAS − cWAS; and if the
agent collaborates with another generalist, the net value will
be VGEN

GEN − cGEN. It follows that it is optimal for generalists to
collaborate with within-area specialists if cGEN− cWAS > 0, and
to otherwise collaborate with outside-area specialists. Gen-
eralists find it optimal to pursue their outside options if the
average net value of collaborating with either outside-area
specialists or within-area specialists is lower than VGEN

O .
WAS. Consider that the opportunity comes to a within-

area specialist. If the agent chooses to pass on the opportu-
nity, the net value accruing will be VWAS

O . Otherwise, if the
agent chooses to collaborate with an outside-area specialist,
the net value will be VWAS

OAS − (cWAS + C); if the agent collabo-
rates with a generalist, the net value will be VWAS

GEN − cWAS; and
if the agent collaborates with another within-area specialist,
the net value will be VWAS

WAS − (cWAS + C). It follows that it is
optimal for within-area specialists to collaborate with gener-
alists if VWAS

O < VGEN, and to otherwise pursue their outside
options.

Proposition A1. The equilibrium outcome depends on the differ-
ence between costs ci such that (a) if the difference is sufficiently
large, then, in equilibrium, within-area specialists and general-
ists collaborate on the opportunity as long as the values of their
respective outside options are lower than the net value captured
through this collaboration; (b) if the difference is sufficiently small,
approaching 0, then, in equilibrium, generalists and outside-area
specialists collaborate on the opportunity, while within-area spe-
cialists are left to pursue their outside options.

Proof. Consider the optimal choice of each agent i who seeks
to maximize his or her payoff. It follows that when the differ-
ence between cWAS and cGEN is sufficiently large (cWAS� cGEN),
within-area specialists match with generalists if VWAS

O <VGEN,
and otherwise pursue their outside options. Similarly, gener-
alists with outside options valued higher than the net value
of collaboratingwithwithin-area specialists pursue their out-
side options. Absent the cost advantage of within-area spe-
cialists (i.e., the difference between costs cWAS and cGEN is
sufficiently small, approaching 0), in equilibrium, generalists
and outside-area specialists match, while within-area spe-
cialists are left to pursue their outside options. Note that in
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this case, as a consequence, total within-area output increases
since generalists always prefer to collaborate on the oppor-
tunity over pursuing their outside options, and outside-area
specialists join in. �

A.2. Collaborative Projects That Include an
Outside-Area Specialist Have the Highest
Value VOAS

Agents’ Optimal Choices. I review the optimal choice of
each agent i who seeks to maximize his or her payoff given
the assumed costs and values. I do so to identify the condi-
tions under which each type will collaborate with another
type and when they will not. I assume a collaboration occurs
only if the action is value maximizing for each party.

OAS. Consider that the opportunity comes to an outside-
area specialist. If the agent chooses to pass on the opportu-
nity, the net value accruing will be VOAS

O . Otherwise, if the
agent chooses to collaborate with a within-area specialist, the
net value will be VOAS

WAS − (cWAS + C); if the agent collaborates
with a generalist, the net value will be VOAS

GEN − cGEN; and if
the agent collaborates with another outside-area specialist,
the net value will be VOAS

OAS − (cOAS + C). It follows that it is
optimal for outside-area specialists to collaborate with gen-
eralists if cWAS + C > cGEN, and to otherwise collaborate with
within-area specialists. Outside-area specialists find it opti-
mal to pursue their outside options if the average net value
of collaborating with generalists or within-area specialists is
lower than VOAS

O .
GEN. Consider that the opportunity comes to a general-

ist. If the agent chooses to pass on the opportunity, the net
value accruing will be VGEN

O . Otherwise, if the agent chooses
to collaborate with an outside-area specialist, the net value
will be VGEN

OAS − cGEN; if the agent collaborates with a within-
area specialist, the net value will be VGEN

WAS − cWAS; and if the
agent collaborates with another generalist, the net value will
be VGEN

GEN − cGEN. It follows that it is optimal for generalists
to collaborate with outside-area specialists if VOAS − VGEN >
cGEN − cWAS, and to otherwise collaborate with within-area
specialists. Generalists find it optimal to pursue their outside
options if the average net value of collaborating with outside-
area specialists or within-area specialists is lower than VGEN

O .
WAS. Consider that the opportunity comes to a within-

area specialist. If the agent chooses to pass on the opportu-
nity, the net value accruing will be VWAS

O . Otherwise, if the
agent chooses to collaborate with an outside-area specialist,
the net value will be VWAS

OAS − (cWAS + C); if the agent collabo-
rates with a generalist, the net value will be VWAS

GEN − cWAS; and
if the agent collaborates with another within-area specialist,
the net value will be VWAS

WAS − (cWAS + C). It follows that it is
optimal for within-area specialists to collaborate with gener-
alists if (VOAS −VGEN) < C and to otherwise collaborate with
outside-area specialists. Within-area specialists find it opti-
mal to pursue their outside option if its value is higher than
both VOAS −C and VGEN.

Proposition A2. The equilibrium outcome depends on the differ-
ence between costs ci such that (a) if the difference is sufficiently
large, then, in equilibrium, within-area specialists and either gener-
alists or outside-area specialists collaborate on the opportunity, with
the realization being determined by the difference between (VOAS −
VGEN) and C; (b) if the difference is sufficiently small, approach-
ing 0, then, in equilibrium, generalists and outside-area specialists

collaborate on the opportunity, while within-area specialists are left
to pursue their outside options.

Proof. Consider the optimal choice of each agent i who seeks
to maximize his or her payoff. It follows that when the dif-
ference between cWAS and cGEN is sufficiently large (cWAS �
cGEN), within-area specialists match with either generalists or
outside-area specialists. Within-area specialists with outside
options valued higher than VOAS − C and VGEN, and gener-
alists and outside-area specialists with outside options val-
ued higher than the average net value of collaborating with
within-area specialists, pursue their outside options. Absent
the cost advantage of within-area specialists (i.e., the distance
between costs cWAS and cGEN is sufficiently small, approach-
ing 0), in equilibrium, generalists and outside-area specialists
match, while within-area specialists are left to pursue their
outside options. Note that in this case, as a consequence,
total within-area output increases since both generalists and
outside-area specialists always prefer to collaborate on the
opportunity over pursuing their outside options. �

Appendix B. Quotes from Personal Email
Exchanges with Researchers

1. “Image (video) analysis tasks are widespread nowa-
days. This is mainly because a multitude of image sensors
abound (they have become a commodity) and all the cap-
tured content cannot be analyzed by human eyes. . . .So image
analysis (computer vision) tasks have become, in turn, in
great demand themselves.

But something fundamentalmakes automated vision tasks
a difficult endeavor: projection. Analysis algorithms are not
analyzing the actual (3D+ time) scene but a (2D+ time) pro-
jection of the scene on the camera sensor. Thus, we lose a
dimension. And this means that higher intelligence is needed
in automatic analysis to avoidmistakenly detect, say, a fly at a
short distance from the sensor by (let’s say) an elephant at the
far background. . . .And this is due to the effect of the “appar-
ent” size of objects in a projected image (smaller when farther
away). Basically, we don’t know the scale (i.e., the actual size)
of an N-pixels wide dark spot, because we don’t know the
distance at which it is placed from the sensor.

For many years, stereo (and multi-view) sensor arrange-
ments have tried to introduce the third dimension (distance
to the sensor) by triangulating scene features from differ-
ent viewpoints. Fairly good results have been reported, but
the higher computation load, the difficulties of managing
several sensors simultaneously, and the imprecision of the
result (one should find the corresponding features across
the sensors to be able to triangulate) have put multi-view
approaches on the top list of the most CPU-hungry image
analysis tasks (difficult to run in real-time or on normal com-
puters, not to say in mobile environments). . . .

Some years ago, Time-of-Flight (ToF) sensors made an
interesting introduction of sensors contributing not only the
light value for each pixel but also its depth (distance from the
camera) . . .but (1) at a cost on the several thousand USD and
(2) with very poor image resolution. The price tag made ToF
sensors only available to well-funded research facilities. . . .

And in fall 2010, MS Kinect was launched. It was not the
product itself (a peripheral of the MS XBox console, with
several gaming apps) that made the eyes of all researchers
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wide open. . . . It was the sensor itself, a camera-projector pair
plus a VGA [video graphics array] camera, providing VGA
resolution RGB plus depth information . . . at a cost much less
than one-tenth of the ToF sensors mentioned above.

In my group alone, three out of four Ph.D. students having
started their thesis in a multiview capture facility (a Smart
Room equippedwith a dozen cameras) for body tracking and
gesture analysis, then changed to a single Kinect sensor to
continue the same applications and already defended their
thesis (or are about to) with nice results, having forgotten
about all the hurdles of their starting research pains with
multiple cameras.”

2. “As per my opinion, the advent of Kinect has led to
an unprecedented revolution in the field of (3D) computer
vision, 3D robotic perception, and image processing. The
main factors of the phenomenon have been on one side the
cost (as it was originally sold at just 150$) and on the other
the fact it provided dense 3D frames in real-time. These two
aspects suddenly allowed researchers to have direct access
to high volumes of 3D data acquired at 25 frames per sec-
ond, thus extremely speeding up the testing and experi-
mental stage of their algorithms. Indeed, several methods in
the field of 3D computer vision and 3D robotic perception
have real-time requirements and couldn’t work well on top
of previous technologies such as laser scanners (too slow),
stereo cameras (not dense enough), and Time-of-Flight cam-
eras (too low resolution). Furthermore, Microsoft Kinect (and
similar products, such as the Asus Xtion) started to push
forward applications developed for the mass market and
based on computer vision, the first example of this list being
the videogames and joypad-free applications developed by
Microsoft on the Xbox. This has led to more attention and
importance to the field of computer vision, motivating and
increasing the amount of research projects, grants and funds
on these topics. Thanks to these new devices, a lot of research
focus has switched to 3D computer vision-related research, as
witnessed by several research groups traditionally working
on related fields (virtual reality, robotics, biomedical engi-
neering) that have now turned their heads towards using
Microsoft Kinect within their research.”

3. “The Microsoft Kinect sensor is the first depth camera
that provides the depth images with sufficient resolutions for
typical computer vision (CV) tasks at an affordable price to
most people. Before the advent of Kinect, the typical depth
cameras cost far more than the Kinect and could usually be
used in only some laboratories. The Kinect makes it possible
for the common researchers to gain insight into CV tasks
with the depth camera.

There are some CV tasks in which the depth images
are especially useful, such as human pose estimation, hand
motion capture, and gesture recognition. However, partly
due to the high price of previous depth cameras, researchers
in computer vision heavily relied on color cameras before the
Kinect. The lighting condition variations, background clut-
ters, and similarity in appearance of different objects in the
color images make the above tasks difficult and cause ambi-
guity in object segmentation, detection, or recognition in the
input images. Compared to the color cameras, these tasks are
easier for the depth cameras. The objects with similar colors
can be differentiated based on their different distances to the
camera. Also, the contrast in depth images describes the 3D
surface of the objects and is generally more discriminative for

feature extraction. For instance, the depth difference feature
adopted by the Kinect is capable of recognizing the individ-
ual body parts with high accuracy, and thus presents a prac-
tical solution for human pose estimation. The recent results
on hand motion capture and gesture recognition also show
better accuracy can be obtained with the depth cameras like
the Kinect.”

4. “We work in two fields related to the Kinects: telepres-
ence and object tracking.

For telepresence, the idea is to immerse a user into a simu-
lated environment (similar to virtual reality), in order to give
him or her the impression of being in a completely different
place. Kinect devices allowus to fuse simulated and real data,
increasing the realism of the simulation. For example, one of
our demos consists of “teleporting” a user to our laboratory,
where the user is able to navigate freely, while integrating
information from the real world (such as our colleagueswalk-
ing around) in real-time.

The other field is object tracking, where we aim to simul-
taneously estimate the shape and position of a given object.
The advantage of a Kinect device is that it provides real-time
depth information with reasonable accuracy. Its low price
and small size also allow us to deploymulti-camera networks
with little effort. These networks are capable of covering a
large area and observing a given object from many angles
simultaneously. We are not alone in working with Kinect;
in fact, the use of Kinect in the field of object tracking has
exploded in the last few years. In conferences and journals,
presentations casually mentioning Kinect have become the
norm.

In conclusion, Kinect devices have definitively changed
how we work, both in telepresence and in object tracking.”

5. “Indeed, for a few years I have work with the Kinect
in biomedical engineering development. I use it in motion
analysis, especially for gait. The use that I am doing is not
the designated one from Microsoft. It is not a gaming one.
This is because the depth measurement done by this camera
is so affordable it is a breakthrough for computer vision and
particularly motion analysis domain.

I used it for gait motion analysis in order to measure gait
asymmetry. We have developed a system really efficient for
gait asymmetry measurement, especially lower limb move-
ment. Its aim is the screening of disease like leg length dis-
crepancy (1 person in 1,000 has a leg length difference over
2 cm) and hip and knees prosthesis surgery follow up. I used
it too for fall detection research.

Moreover, something very interesting in the Kinect story is
the position of Microsoft. Normally such a huge company is
used to dictating its view on the domain (closed sources, user
information limitation, . . .). But in the Kinect story, due to the
involvement of communities, both academic, company, and
geek ones, Microsoft decided to adapt the Kinect toWindows
and the library of motion capture that they developed. But at
the release of the version for Xbox, they said that their library
and sensor are very protected and would not be hacked and
they would refuse any uses other than gaming on Xbox.”

6. “Kinect has been an important game changer in the
field of robotics. The availability of a RGB-D (color and depth)
sensing device at low cost with a high depth resolution made
possible new or improved approaches in different mobile
robotics fields. This includes environment mapping, object
detection, tracking, and more in general robot navigation.
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Nowadays, Kinect can be considered a standard robot
sensing equipment. It is worthwhile to note that the Kinect
sensor made possible the access of high-resolution depth
sensing to small or less-funded research groups that before
had no possibility of having access to such kind of a
device.”

7. “Since I’m not a gamer, I’m not sure how many gamers
play with Kinect, but many researchers in computer vision
and robotics started to use it as the sensor replacing cameras
and other range finders. Similar sensors have already existed
before Kinect, but they are expensive, which is an economic
impact. The most important thing is it is easy to use.”

8. “It’s incredibly powerful to have a cheap way to obtain
even a noisy estimate of a user’s pose. $200 is zero dollars
for a research lab, while $2,000 and $20,000 are $2,000
and $20,000—a lot of money! Rehabilitation researchers and
robotics researchers love the Kinect because of all the new
types of applications it enables. It just works! That is great.”

Appendix C. Additional Details to Results in the Main Analysis

Table C.1. Estimation Coefficients Displayed in Figure 2

Dependent variable: Log of count of publications per year per research topic

Compared to research topics close in volume to motion
sensing before Kinect’s launch

MotionSensingPub× 2005 −0.1915
(0.1383)

MotionSensingPub× 2006 −0.1377
(0.1217)

MotionSensingPub× 2007 −0.0327
(0.1291)

MotionSensingPub× 2008 −0.0587
(0.0752)

MotionSensingPub× 2009 −0.0282
(0.0335)

MotionSensingPub× 2011 0.2214∗∗∗
(0.0436)

MotionSensingPub× 2012 0.4127∗∗∗
(0.0575)

Year fixed effects Yes
Research topic fixed effects Yes
R-squared 0.980
Observations 64

Notes. The data set is a panel of count of publications between 2005 and 2012. The unit of analysis is
year-research topic. All models are OLS with robust standard errors clustered by research topic.
∗∗∗Significant at 1%.

Table C.2. Set of Keywords Used to Identify Publications Referencing Certain Research Topics

Close in volume to
motion sensing before

Research topic Kinect’s launch List of key terms

1 Motion sensing N/A motion sensing, motion tracking, motions tracking, motion recognition, motion
sensor, motion capture, 3D tracking, three-dimentional tracking, 3D imaging,
three-dimentional imaging, depth camera, depth cameras, ranging camera,
ranging cameras, flash LIDAR, time of flight camera, time-of-flight camera,
time of flight cameras, time-of-flight cameras, RGB-D camera, RGB-D cameras,
3D camera, 3D cameras, Kinect

9. “For us, Kinect had a game-changing effect on the
research possibilities. We work in robotics perception, i.e.,
how can robots perceive and act in the environment. Since
our world is 3D and Kinect gives 3D information, the data
becomes extremely powerful. This has enabled significant
advances in applications such as object detection, human
activity recognition, and anticipation for robots, as well
as robotic grasping and path planning. This also required
very creative new algorithmic ideas to make Kinect actually
useful.”

10. “Kinect has been driving our research for the last 1.5–2
years and, if not for Kinect, I am not sure we would be work-
ing right now on our gesture-based authentication project
supported by the National Science Foundation (NSF). Also,
looking around computer vision conferences, one can see
many papers that use Kinect for data collection. I believe
Kinect has been a significant driver in computer vision
research in the last few years.”
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Table C.2. (Continued)

Close in volume to
motion sensing before

Research topic Kinect’s launch List of key terms

2 Speech and voice
recognition

Yes speech recognition, voice recognition, speech processing, linguistics, natural
language communication, natural voice communication, speech signal, voice
technology, voice-controlled interface, speech interface, voice interface, speech
coding, spoken language technology, spoken language technologies, speech
technology, voice technology, HMM, hidden Markov model, VQ, vector
quantization, ANN, artificial neural network, SVM, support vector
machine, VQ/HMM

3 Green energy Yes green energy, greenhouse gas, greenhouse gases, renewable energy,
environmentally friendly, green technologies, biofuel, biofuels, bio-fuel,
bio-fuels, global warming, fossil fuel, climate change, climate changes, green
technology, renewable technology, renewable technologies, wind energy, solar
energy, tidal energy, geothermal energy, solar power

4 Aerospace and
electronic
systems

Yes aerospace, air traffic control, air safety, Earth Observing System, orbit satellite,
orbit satellites, moon, space station, space stations, space exploration, space
technology, aircraft, propeller, electronic warfare, electronic countermeasure,
electronic countermeasures, radar countermeasure, radar countermeasures,
military satellite, military satellites, weapon, weapons, gun, guns, missile,
missiles, airborne radar, bistatic radar, doppler radar, ground penetrating radar,
laser radar, meteorological radar, millimeter wave radar, multistatic radar,
MIMO radar, passive radar, radar countermeasure, radar countermeasures,
radar detection, radar imaging, radar measurements, radar polarimetry, radar
remote sensing, radar tracking, radar clutter, spaceborne radar, spread
spectrum radar, synthetic aperture radar, synthetic aperture radar, sonar

5 Antennas and
propagation

No antennas, antenna, Butler matrix, phased arrays, planar arrays, diffraction,
propagation, electromagnetic reflection, optical reflection, optical surface wave,
optical surface waves, optical waveguide, optical waveguides, radio
propagation, radiowave propagation, radio astronomy

6 Broadcast
technology

Yes broadcast, broadcasting, Digital Radio Mondiale, digital audio player, digital
audio players, frequency modulation, radio network, radio networks

7 Packaging and
manufacturing
technology

No capacitor, capacitors, varactor, varactors, coil, coils, diode, diodes, electrode,
electrodes, anode, anodes, cathode, cathodes, microelectrode, microelectrodes,
fuse, fuses, active inductor, active inductors, thick film inductor, thick film
inductors, thin film inductor, thin film inductors, resistor, resistors, memristor,
memristors, varisor, varistors, optical switch, optical switches, transducer,
transducers, damascene integration, micromachining, radiation hardening, flip
chip, high-K gate dielectrics, quasi-doping, semiconductor device doping,
semiconductor epitaxial layer, semiconductor epitaxial layers, semiconductor
growth, silicidation, wafer bonding, electronic packaging, electronics
packaging, chip scale packaging, environmentally friendly manufacturing
technique, environmentally friendly manufacturing techniques, surface-mount
technology, multichip module, multichip modules, integrated circuit
packaging, semiconductor device packaging

8 Dielectrics and
electrical
insulation

No dielectric, dielectrics, capacitor, capacitors, ferroelectric, piezoelectric,
pyroelectric, dielectrophoresis, electrohydrodynamics, electrokinetics,
electrostriction, electric breakdown, avalanche breakdown, corona, arc
discharge, arc discharges, electrostatic discharge, flashover, glow discharge,
glow discharges, partial discharges, partial discharge, surface discharge,
surface discharges, cable insulation, gas insulation, sulfur hexafluoride,
insulator, insulators, trees-insulation, isolation technology, oil insulation, oil
filled cable, oil filled cables, plastic insulation

9 Electromagnetic
compatibility and
interference

No electromagnetic, reverberation chamber, spark gap, spark gaps, mutual coupling,
optical coupling, Eddy currents, inductive power transmission, Gamma ray,
Gamma rays, line-of-sight propagation, cable shielding, magnetic shielding,
EMP, EMTDC, EMTP, power system transient, power system transients,
crosstalk, diffraction, echo interference, radiofrequency interference, specific
absorption rate, radiative interference, electrostatic interference, interchannel
interference, interference cancellation, interference channel, interference
channels, interference elimination, interference suppression, intersymbol
interference, TV interference
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Table C.2. (Continued)

Close in volume to
motion sensing before

Research topic Kinect’s launch List of key terms

10 Imaging technology No imaging, angiocardiography, angiography, cardiography, echocardiography,
electrocardiography, DICOM, encephalography, mammography, ground
penetrating radar, holography, image converter, image converters, active pixel
sensor, active pixel sensors, CCD image sensor, CCD image sensors, CMOS image
sensor, CMOS image sensors, charge-coupled image sensor, charge-coupled image
sensors, infrared image sensor, infrared image sensors, magnetic resonance,
diffusion tensor, magneto electrical resistivity, atomic force microscopy, electron
microscopy, photoelectron microscopy, scanning electron microscopy, transmission
electron microscopy, scanning probe microscopy, Talbot effect, thermoreflectance,
radiography, tomography, ultrasound

11 Microwave technology Yes microwave, beam steering, maser, masers, gyrotron, gyrotrons, K-band, L-band,
rectenna, rectennas, millimeter wave, MIMIC, MIMICs, submillimeter wave

12 Oceanic engineering
and marine technology

Yes marine, underwater, rebreathing, ocean, oceanographic

13 Resonance theory and
technology

Yes ferroresonance, magnetic resonance, nuclear magnetic resonance, paramagnetic
resonance, resonance light scattering, stochastic resonance

Notes. I calculate volume as the number of publications per research topic per period of interest. I define research topics close in volume to
motion sensing as research topics with up to 10 times the number of publications in motion sensing over the period of interest. The remaining
research topics have a number of publications 20 times or higher than the number in motion sensing over the period of interest. All results
remain robust to matched research topics based on yearly growth rate before 2010.

Endnotes
1For example, attributes such as gender, cohort, age, ethnicity, and
geography were found to influence team formation relative to sim-
ilarity of knowledge domains (e.g., Ding et al. 2010, Stephan 2012,
Baccara and Yariv 2013, Boudreau et al. 2016, Freeman et al. 2015,
Freeman and Huang 2015).
2See CERN, Atlas, “The collaboration,” https://atlas.cern/discover/
collaboration (accessed July 2017).
3Bill Gates explains, “Kinect is a motion-sensing input device
that’s a revolutionary new way to play games using your body
and voice instead of a controller. . . .Kinect is a remarkable tech-
nical achievement. The ability to take video cameras, multi-array
microphones and depth sensors, and bring them all together in
order to recognize people, understand and anticipate how they
move, incorporate voice recognition, and insert them into games . . . is
phenomenal. . . . [However], Kinect is much more than just a cool
video game technology. . . . I’m convinced this is a transformational
technology. . . .Asurprising number of academic researchers andoth-
ers are exploring using Kinect in ways we never imagined. In the UK,
for example, scientists are developing robots using Kinect’s inexpen-
sive (but sophisticated) motion-sensing technology to search for survivors
in potentially unstable buildings after an earthquake. Researchers in
Seattle are exploring how Kinect can give surgeons a “virtual” sense
of touch during remote surgical procedures. . . .” (Gates 2011, empha-
sis added).
4 It is important to note that the scope of this substitution is limited to
the knowledge captured by the algorithms embedded in the research
technology.
5 In organizational settings, scholars have identified generalists as
playing an important role in solving complex problems (Garicano
2000) that require specialist expertise. Furthermore, others have
found this role to grow in importance in environments that neces-
sitate a multifaceted set of specialists (Ferreira and Sah 2012). Sim-
ilarly, organizational theory highlights the salient role of networks
in facilitating diverse knowledge creation both at the individual and
firm levels (e.g., Burt 1992, Hargadon and Sutton 1997, Reagans
and Zuckerman 2001). Furthermore, knowledge diversity enables
firms to recognize the value of new knowledge for innovation

(Cohen and Levinthal 1990). More generally, scholars have identified
investments in diversity to fuel technological and economic progress
(Acemoglu 2012).
6See National Institutes of Health (NIH), National Human Genome
Research Institute. “The cost of sequencing a human genome,”
http://www.genome.gov/sequencingcosts/ (accessed July 2014).
7The approach acknowledges not only the fact that opportunities can
be born in any situation but also that Kinect in particular has a wide
reach outside academia; hence, ideas might be born while observing
Kinect in settings other than academia.
8The results persist when considering single authorship as an option
in addition to collaboration.
9The results persist when considering either VGEN or VOAS to have the
highest value (Appendix A).
10The results persist when considering the cost of collaborating with
generalists to be equal to ε, small.
11 In his blog, Johnny Lee provides further evidence that Microsoft
did not intend for Kinect’s use outside its gaming purpose. Lee is a
former Microsoft Kinect team member who subsequently moved to
Google. Lee states, “I actually have a secret to share on this topic.
When my internal efforts for a [Kinect] driver stalled, I decided to
approach AdaFruit to put on the Open Kinect contest. For obvi-
ous reasons, I couldn’t run the contest myself. . . .Without a doubt,
the contest had a significant impact in raising awareness about the
potential for Kinect beyond Xbox gaming both inside and outside
the company. Best $3,000 I ever spent” (Lee 2011).
12Appendix B includes quotes from researchers attesting to these
facts. I collected these quotes through personal email exchanges with
researchers from top universities in Europe and North America.
13“About IEEE Xplore® Digital Library,” http://ieeexplore.ieee.org/
xpl/aboutUs.jsp (accessed July 2014).
14Broad knowledge exposure results from involvement in a wide
variety of research topics. Whether or not this is driven by involve-
ment in contributing to different research topics or by bringing the
same knowledge to a variety of research topics, researchers with
broad exposure to knowledge—generalists—differ from specialists
in that they do not have a narrow, well-defined research topic.
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15By definition, Euclidian distance is equal to the square root of
the Herfindahl index. The results remain robust when considering a
diversification measure based on the Herfindahl.
16There is no evidence of systematic difference in the propensity of
collaborating author types to publish journal or conference proceed-
ing academic papers.
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